
おはな

特性を上手に利用すると、

がんの

ŧ

幹細胞が残っていると再発や

ため、画像上ではがんが消失して 細胞は最後まで抵抗します。 抗がん剤治療を行っても、 抗性を持っていて、

今回

転移を起こすことになると考えら

れています

などの特性があります。でもこの らは検出しにくい、取扱が難しい 壊す力が強い、

体内に入ると外か

なかでもアルファ線は細胞を 夕線などの放射線を出します

幹細胞は放射線や抗がん剤には抵

放射線照射や

がん幹

この

こして大きくなります。

このがん

放射性医薬品を注射してがんを治療するアルファ線内用療法

どと比べて、

生物学的効果(が

そこで、

エックス線や陽子線な

東北放射線科学センター 理事長 宍戸 文男氏

ないですか?」という声が聞こえ

「放射性物質を体内に注射して

を治療する」「危険なんじゃ

ることです。

がん組織の中

ントは、

が

ん幹細胞を根絶

35

が実用化されつつあります。

られ、

がん組織が拡大・浸潤を起

放射性物質からはアルファ線や

てきそうです。

でも、この治療法

胞が分裂して多くのがん細胞が作

がん幹細胞があり、

この幹細

治療に非常に役立つのです。

は、 組織への線量をこの耐容線量以下 明らかとなっています。 組織が放射線の影響(副作用)を示 に放射線を集中して、 さない放射線量である耐容線量が す。これまでの臨床研究で、正常 がん組織に線量を集中することで 治療の話題を取り上げてみました。 つあるアルファ線核種による放射線 が 核医学の分野で話題になりつ んの放射線治療の大原則は

ことになります。 に抑えれば、 副作用は発生しない

周囲の正常

われています。

さらに、がん細胞やがん幹細

が

ん組織

核種で標識した放射性医薬品が使

ます)では、

アルファ線を放出する

で治療する方法(内用療法とい 今回紹介する放射性医薬品の注射 が選ばれます。そのひとつとして、 細胞をころす力)が高い重粒子線

もう一つのがんの放射線治療の

を受け取る分子やたんぱく質の 原)や受容体(外からの刺激など 胞の表面に存在する分子(表面抗

(図1)様的放射線治療に使われる 放射性医薬品の模式図 放射線核種 細胞への結合物質 (抗体・受容体など) がん細胞から 出ている突起 がん細胞 出典:A. Yordanova et al. OncoTargets and Therapy 2017 10 4821-4828 Theranostics in nuclear medicine practice を基に作成

取り込まれます。

たR-223から放出されるア

療

法

用いた内用治

ファ線核種を

骨に転移し

た

が

た

前

そして、骨転移巣に取り込ま

るがんの骨転移巣に多く運ば

ラジウムは、

注射で体内に送ら

ると、

代謝が活発になって

h w

ŋ 剤

ま が

す。

海

外では、

アル

りやすい性質があります。 ルシウムと同じように骨に集ま

塩化

る放射性薬 進められてい

複数あ

期ですので、

骨の成分であるカ

現在研究が

薬剤

たとして、 放射性

な

ーフィゴ以外にも、

今後有

R-223を使った前立腺の骨転

ルファ線核種であるラジウム

移の治療に使われています。

ラジウムは周期表でみる

ルシウムと同じ2族で第7周

保険適用されることになり、 る注射薬が2016年から健康 般名「塩化ラジウム」)と呼ば

ア

ジウムは消化管から糞中へ排泄さ

胆汁中へは分泌されません

〔図2〕 ゾーフィゴ® 静注の働き方 1 放射性物質のラジウム-223が、 代謝が活発になっている骨の移転巣に集まります。 ゾーフィゴ[®] 静注 骨転移巣 ラジウム-223 から放出される アルファ線の力によって、 骨に移転したがん細胞を直接攻撃します。 ラジウム-223

※パイエル薬品株式会社HPより引用

ジの図に示します。 論文に掲載された症例を前ペ イデル 腺がん患者に対して効果があっ ことが報告されています。 ベル ク大学で行われて、

果的に治療がすすむと考えられ

この仕組みが、アル

フ

周囲の正常な細胞への影響は ウム8(メタストロン)に較べて

少

ないとされています。

される要因です(図1)。

日本でも「ゾー

フィゴ®」(ー

ゆっくりと静脈内投与することに

より治療します。放射線はごく

を最大6回まで、

4週間間隔で

人には、

1 回 55 k B q

/ kg

ħ.

微量ですし、

吸収されなか

ったラ

《核種を使った内用療法が期

び屋として利用すれば、

よ り 効

ベ の

夕線を放出するストロンチ

を注射したアルファ線核種の運

らに選択的に結合する物質が見

かりつつあります。

この物質

細胞2個~

10個分しか飛ばない

で、

これまで使われていた

こと)などの研究がすすみ、これ

細胞の増殖をおさえます(図2)。

ルファ線の飛行距離は短く

な 線核種として、 n の写真では全身に多数のがんの らにもう1回アルファ線標的 行った結果がCの画像です。 225を使用した治療を2回 を使用した後の写真ですが、 転移病巣(黒い部分)が認めら ます。 < が この患者は、去勢抵抗性前立 少なく、 なった前立腺がん)で、 ん(ホルモン療法の効果が Bはベータ線標的薬剤 その後、 A(アクチニウム) -アルフ 治 さ ア効 Α

> 効果を示したことが報告されて ることがはっきり 画像上でも病巣が無くなって 療を行っ ます。 た結果が わかるような D の写真で、

化に伴 內用 体内への影響が少な () 療法には大きな効果 増えて 実用化にあたっ アルファ線核種 今後の進展を い くがんに 日本でも

対して、 高齢 期待しています。 治療法として大きな役割を果た 問題点はありますが、 があることが理解していただけ の す治療法として て研究を続けなければならない たと思います。 標的 以上のように、

ひろば 500号